Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom

a technology of cellulose esters and ionic liquids, which is applied in the field of cellulose esters and/or ionic liquid production processes, can solve the problems of insufficient methods and apparatuses for reforming and/or recycling ionic liquids, the inability to use ionic liquid solvents in many processes, and the cost of ionic liquids

Inactive Publication Date: 2012-04-26
EASTMAN CHEM CO
View PDF0 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent describes a method for making a type of cellulose ester that has specific properties. The method involves dissolving cellulose in a special liquid and then adding reagents to create the cellulose ester. The resulting cellulose ester can be precipitated and separated from the liquid. The recovered cellulose ester can be used to make various products such as photographic film, protective film, and drug delivery products. The technical effect of this patent is the ability to create a cellulose ester with specific properties that can be used in various applications.

Problems solved by technology

Ionic liquids can be costly; thus, their use as solvents in many processes may not be feasible.
Despite this, methods and apparatus for reforming and / or recycling ionic liquids have heretofore been insufficient.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
  • Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
  • Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Cellulose Ester (Comparative)

[0203]A 3-neck 100 mL round bottom flask, fitted with two double neck adapters giving five ports, was equipped for mechanical stirring, with an iC10 diamond tipped IR probe (Mettler-Toledo AutoChem, Inc., Columbia, Md., USA), and with an N2 / vacuum inlet. To the flask was added 61 g of 1-butyl-3-methylimidazolium chloride. Prior to adding the [BMIm]Cl, the ionic liquid was melted at 90° C. then stored in a desiccator; during storage, the [BMIm]Cl remained a liquid. While stirring rapidly, began adding 3.21 g of previously dried microcrystalline cellulose (DP ca. 335) in small portions (3 min addition). The slurry was stirred for 5 min before applying vacuum. After ca. 3 h 25 min, most of the cellulose had dissolved except for a few small pieces and 1 large piece stuck to the probe. After 5.5 h, the oil bath temperature was increased to 105° C. to speed up dissolution of the remaining cellulose. The solution was maintained at 105° C. for 1.5...

example 2

Modification of Cellulose with Water

[0207]A 3-neck 100 mL round bottom flask, fitted with two double neck adapters giving five ports, was equipped for mechanical stirring, with an iC10 diamond tipped IR probe, and with an N2 / vacuum inlet. To the flask was added 64.3 g of 1-butyl-3-methylimidazolium chloride. Prior to adding the [BMIm]Cl, the IL was melted at 90° C. then stored in a desiccator; the [BMIm]Cl remained a liquid during storage. To the ionic liquid was added 3.4 g (5 wt %) of microcrystalline cellulose (DP ca. 335) at ambient temperature while stirring rapidly to disperse the cellulose. Approximately 12 min after adding the cellulose, a preheated 80° C. oil bath was raised to the flask. After ca. 17 min in the 80° C. oil bath, visually, all of the cellulose appeared to be dissolved. After ca. 22 min in the 80° C. oil bath, began applying vacuum. To insure complete removal of water, 50 min after applying vacuum, the oil bath setting was increased to 105° C. and the solutio...

example 3

MSA Secondary Component, No Modification with Water

[0212]Cellulose (3.58 g, 5 wt %) was dissolved in 68 g of [BMIm]Cl in a manner similar to Example 2. To the cellulose solution (contact temperature=80° C.) was added a mixture of 433 mg MSA and 6.76 g of Ac2O (3 eq) drop wise (8 min). The reaction was sampled throughout the reaction period by removing 6-10 g aliquots of the reaction mixture and precipitating in 100 mL of MeOH. The solid from each aliquot was washed 2× with 100 mL portions of MeOH then dried at 60° C., 5 mm Hg. The solid samples were snow white. After ca. 2 h, all of the Ac2O appeared to be consumed by IR. The experiment was aborted and the remaining sample was processed as above.

[0213]The precipitation and the wash liquids from each aliquot were combined and concentrated invacuo at 68° C. until the vacuum dropped to 24 mm Hg which provided 64 g of recovered [BMIm]Cl. Unlike Example 2, analysis by 1H NMR revealed that the ionic liquid did not contain any acetic acid ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

This invention relates to novel compositions comprising regioselectively substituted cellulose esters. One aspect of the invention relates to processes for preparing regioselectively substituted cellulose esters from cellulose dissolved in ionic liquids. Another aspect of the invention relates to the utility of regioselectively substituted cellulose esters in applications such as protective and compensation films for liquid crystalline displays.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application is a divisional application of U.S. Non-Provisional application Ser. No. 12 / 539,800 filed on Aug. 12, 2009, which is a continuation in part application which claims priority to U.S. Non-Provisional application Ser. No. 12 / 030,387, filed Feb. 13, 2008, which claims priority to U.S. Provisional Application Ser. No. 60 / 901,615; it also claims priority to U.S. Provisional Application 61 / 088,423 filed Aug. 13, 2008, the disclosures of which are herein incorporated by reference in their entirety to the extent they do not contradict the statements herein.BACKGROUND[0002]1. Field of the Invention[0003]The present invention relates generally to cellulose esters and / or ionic liquids. One aspect of the invention concerns processes for producing cellulose esters in ionic liquids.[0004]2. Description of the Related Art[0005]Cellulose is a β-1,4-linked polymer of anhydroglucose. Cellulose is typically a high molecular weight, polydispe...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C08B3/06C08B3/04C08B3/16C08B3/08
CPCC07D233/54C08B1/003C08B3/06C08B3/16G02B5/3083C08J5/18C08J2301/14G02B1/105C08B3/28G02B1/14
Inventor BUCHANAN, CHARLES MICHAELBUCHANAN, NORMA LINDSEYHEMBRE, ROBERT THOMASLAMBERT, JUANELLE LITTLEDONELSON, MICHAEL EUGENEGORBUNOVA, MARYNA GRIGORIEVNAKUO, THAUMINGWANG, BIN
Owner EASTMAN CHEM CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products