Exclusion Device and System For Delivery

Inactive Publication Date: 2007-12-13
ELECTROFORMED STENTS
View PDF35 Cites 197 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023] The current invention details an exclusion device and endovascular catheter-based delivery system. The device, when deployed in a lumen or orifice, reduces the flow of fluid past the device. In an illustrative embodiment, the device is delivered endovascularly to the neck of an aneurysm and deployed to block the neck of the aneurysm, thereby reducing blood flow into the aneurysm. The deployment leaves the parent artery fully open and does not block perforator arteries that may exist near the aneurysm. In addition, the present invention treats aneurysms at bifurcations and aneurysms located on the side of an artery.
[0024] The exclusion device of the present invention, a thin-walled, ductile shell, transitions between an initial as-manufactured shape, a compacted delivery shape, a pressure expanded shape similar to the as-manufactured shape, an evacuated crushed shape, and a final balloon-contoured shape. When deployed at the neck of an aneurysm, the exclusion device reduces blood circulation into the aneurysm, triggering a thrombus in the aneurysm that starts the healing process.
[0027] If no protective sheath is used, an outer catheter tube may restrain the artery lobe during expansion of the aneurysm lobe. This expansion of the aneurysm lobe may aid in properly deploying the device by facilitating seating of the expanded aneurysm lobe against the neck of the aneurysm, leaving the device in the proper position for full inflation of the artery lobe.
[0031] An exclusion device, manufactured and deployed as described by this invention, may be used to treat a patient with an aneurysm which has a significant leak or which has ruptured completely. The exclusion device is able to occlude a ruptured aneurysm where significant forces exist due to flowing blood. The present invention provides a treatment option in these crucial cases because of its novel characteristics, which enable a secure, solid seal to be reliably placed over the neck of a ruptured aneurysm. Additionally, the simplicity and speed with which an exclusion device may be deployed make this invention a unique and useful treatment option. This exclusion device, once deployed across the neck of a ruptured or leaking aneurysm, provides an immediate barrier to flowing blood, with no need to wait for thrombus formation, as is the case with coiling. Additionally, coiling is usually not an option in a ruptured aneurysm due to the risk of coils migrating through the hole in the aneurysmal sac and into the brain cavity.

Problems solved by technology

When deployed at the neck of an aneurysm, the exclusion device reduces blood circulation into the aneurysm, triggering a thrombus in the aneurysm that starts the healing process.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Exclusion Device and System For Delivery
  • Exclusion Device and System For Delivery
  • Exclusion Device and System For Delivery

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0081] The current invention provides an exclusion device and novel catheter-based endovascular delivery and deployment methods. In the illustrative embodiments depicted in FIGS. 1-18, an exclusion device 10 is delivered to an aneurysm 430, positioned at the neck 435 of the aneurysm, and deployed, thereby blocking the neck of the aneurysm and reducing blood flow into the aneurysm 430. The deployment leaves the parent (proximal) artery 410 fully open.

[0082] At a bifurcation, the proximal artery 410 splits into two smaller arteries 420 as shown in FIGS. 4-8, and FIGS. 11-18. The deployed exclusion device does not block side branch arteries that may exist near the aneurysm. Aneurysms at bifurcations (as shown in FIGS. 4-8 and FIGS. 11-18) and aneurysms on the side of an artery (as shown in FIG. 10) may be treated. The exclusion device, deployed to cover the neck of an aneurysm, reduces blood flow into the aneurysm and triggers a thrombus in the aneurysm that starts the healing process...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Thicknessaaaaaaaaaa
Thicknessaaaaaaaaaa
Diameteraaaaaaaaaa
Login to view more

Abstract

A medical flow restrictor that may be used to exclude a saccular aneurysm from the circulatory system. The device, a thin walled, foil-like shell, is compacted for delivery. The invention includes the device, electroforming fabrication methods, delivery assemblies, and methods of placing, and using, the device. A device with an aneurysm lobe and an artery lobe self-aligns its waist at the neck of an aneurysm as the device shell is pressure expanded. Negative pressure is used to collapse both the aneurysm lobe and the artery lobe, captivating the neck of the aneurysm and securing the device. The device works for aneurysms at bifurcations and aneurysms near side-branch arteries. The device, unlike endovascular coiling, excludes the weak neck of the aneurysm from circulation, while leaving the aneurysm relatively empty. Unlike stent-based exclusion, the device does not block perforator arteries. This exclusion device can also limit flow through body lumens or orifices.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of priority under 35 U.S.C. §119(e) to provisional application No. 60 / 799,758, filed May 12, 2006, and to provisional application No. 60 / 855,872, filed Nov. 1, 2006, each of which are incorporated herein by this reference.TECHNICAL FIELD [0002] The present invention relates to the field of medical intraluminal delivery of an implantable device that reduces or stops fluid movement that would otherwise flow or circulate through a body lumen or orifice. The invention is well suited for the treatment of neurovascular aneurysms or any other condition that could benefit by completely, or partially, excluding flow through a body orifice or vessel. BACKGROUND OF THE INVENTION [0003] An aneurysm forms when a dilated portion of an artery is stretched thin from the pressure of the blood. The weakened part of the artery forms a bulge, or a ballooning area, that risks leak or rupture. When a neurovascular aneurysm...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61F2/06
CPCA61B17/12022A61B17/12113A61B17/12136A61B17/12172C25D1/02A61B2017/12054A61B17/12031B05D3/007A61B2017/00526A61B2017/1205
Inventor HINES, RICHARD A.
Owner ELECTROFORMED STENTS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products