Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method and apparatus for dynamic space-time imaging system

a dynamic space-time imaging and apparatus technology, applied in the field of dynamic space-time imaging systems, can solve the problems of difficult to achieve stereoscopic profiling with accurate detailed measurements of three-dimensional objects, involving a quite expensive apparatus, and finite (and relatively long) time for all points to be illuminated and surveyed

Active Publication Date: 2006-04-20
4D IMAGING +1
View PDF58 Cites 50 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0015] The invention is also useful for identification and recognition for security applications, as it can provide motion detection and triggered three dimensional mapping of an intruded area. Also it is very applicable to accident analyses and prediction of mechanical failure where dimensional changes in mechanical structures may be analyzed in three dimensions. The invention is also very useful in imaging the holds of ships, planes, freight trains, and warehouses, where the images may yield numerical values for the exact amount and distribution of space available for use, or when partially loaded, for a determination of the space available fur further use. Another application is to security in examining the cargo space in ships, trucks, planes, and other compartments: by determining the volume numerically exactly, the existence of hidden compartments can be found. Another application is to microscopy. Here the three dimensional sizes of the object, (for example, a microbe), are readily determined, and the mobility of the microbe may be measured. Recent research also indicates that weaponized microbes in a cloud can be identified by the reflected light spectrum and by the change in shape of a cloud. This invention provides a significant advantage over the usual two dimensional measurements used for microscopic analyses.

Problems solved by technology

In contrast, the development of stereoscopic profiling with accurate detailed measurements of three dimensional objects has been difficult to achieve.
While such systems provide good three dimensional data, they involve a quite costly apparatus because the time of flight must be measured to a few picoseconds, and the mirrors used to direct the laser beam as well as the mirrors used to route the reflected beam must be exact to a small division of a minute of arc.
In addition, the scanning of a three dimensional object with a laser beam requires a considerable length of time, due to the fact that each incremental point on the surface of an object must be illuminated by the beam and the time of flight measured, resulting in a finite (and relatively long) time for all points to be illuminated and surveyed.
The use of such relatively static methods does not provide for the real-time measurement of dynamic details needed for dynamically imaging and measuring surface contour dimensions of objects which have movement, such as a bridge or beam undergoing stresses and strains.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and apparatus for dynamic space-time imaging system
  • Method and apparatus for dynamic space-time imaging system
  • Method and apparatus for dynamic space-time imaging system

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0031] The present invention generally comprises a method for generating a dimensional map of the surface of an object, and analyzing the dimensional data to examine the object in useful ways. Referring to FIG. 1, the method involves providing a pair of projectors 11, each of the projectors directed to project a pattern of lines on an object 9. The type of projector utilized may be a conventional type or a digital type. The projectors are spaced apart to illuminate differing aspects of the object. A digital camera 10 is directed at the object 9 to acquire images of the object, and the configuration of the projected patterns on the surface of the object. The images are fed to computer 17 which processes the images to generate a dimensional map that numerically describes the contours, edges, openings, and surface features of the object 9. A range finder 19 is also directed toward the object to obtain at least one absolute measurement of the distance of the apparatus to the object, upo...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method for creating a 3D map of the surface contours of an object includes projecting a variety of patterns onto the object, and imaging the patterns as they fall on the object to encode the topographic features of the object. The images are processed in a computer program in a manner such that a complete 3D map of the surface of the object is obtained in digital form. Reiteration of the method can detect motional variation such as a breathing human, flexure of a complex mechanical structure, or a stress-strain testing of an airplane, vehicle, beam, bridge, or other structure.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] Not applicable. FEDERALLY SPONSORED RESEARCH [0002] Not applicable. SEQUENCE LISTING, ETC ON CD [0003] Not applicable. BACKGROUND OF THE INVENTION [0004] 1. Field of the Invention [0005] The present invention relates to an apparatus and method for producing a rapid time-related three dimensional image with a numerical profile of an object. More particularly, it involves projecting complex digitally based patterns or scanning laser beam(s) on to the object, photographing these patterns with a fast response digital camera, and rapidly calculating a dimensional map of the contours, edges, and openings of the object. [0006] 2. Description of Related Art [0007] In 1905, Albert Einstein, who at that time was a patent examiner in Zurich, developed the Special Theory of Relativity which emphasized the importance of considering time in addition to the three dimensions of space in describing the behavior of matter and energy. In accordance with t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G09G5/00
CPCA61B5/0064A61B5/0077A61B5/113A61B5/1176G01N21/8806G01S17/88G01S17/89G06T7/0057H04N13/0207H04N13/0253G06T7/521H04N13/254H04N13/207G06V40/10G06V2201/12
Inventor STEVICK, GLEN R.RONDINONE, DAVID M.SINGER, JEROME R.ROCKLIN, MATTHEW D.
Owner 4D IMAGING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products