Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Light adjustable multifocal lenses

a multi-angle, adjustable technology, applied in the field of optical elements, can solve problems such as the expansion of the element in the area

Inactive Publication Date: 2005-05-12
CALHOUN VISION INC
View PDF16 Cites 89 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008] Novel optical elements are provided whose properties can be adjusted post-manufacture to produce an optical element having different properties. Specifically, the invention relates to an intraocular lens that can be transformed into a multifocal lens after the lens has been implanted in the eye. In this manner, the intraocular and / or focal zones of the lens can be more precisely adjusted after the lens has been subjected to any post-operative migration, and can be based on input from the patient and standard refraction techniques rather than preoperative estimation.
[0012] It has been found that by exposing different regions of the optical element to varying degrees or in a predetermined pattern of external stimulus, it is possible to vary the optical properties of the element in different regions. For example, it is possible through the use of various patterns, to create a central zone with one set of optical properties, surrounded by concentric rings of differing optical properties. In this way, a multifocal lens can be created. In another embodiment, customized bifocal, multifocal, etc. patterns can be written on the lens in one treatment followed by a second treatment to lock-in the unreacted modifying composition present throughout the entire lens. Alternately, multiple treatments of customized patterns can be written on the lens to provide patients with vision without the need for spectacles.

Problems solved by technology

If the optical element possesses sufficient elasticity, this migration of MC can cause swelling of the element in the area exposed to the stimulus.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Light adjustable multifocal lenses
  • Light adjustable multifocal lenses
  • Light adjustable multifocal lenses

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0053] A 6 mm diameter intraocular lens containing a silicone-based MC was prepared using standard molding techniques known to those skilled in the art. The lens had a first polymer matrix prepared from a silicone hydride crosslinked vinyl endcapped diphenylsiloxane dimethylsiloxane. The first polymer matrix comprised about 70 weight % of the lens. The lens also comprised about 30 weight % of a MC (methacrylate endcapped polydimethylsiloxane), 1 weight % (based on MC) of a photoinitiator (benzoin-tetrasiloxane-benzoin), and 0.04 weight % (based on MC) UV absorber. The lens had an initial nominal power of 30 diopters. The center of the lens was then irradiated with 365 nm light using an intensity pattern represented by the equation: I=I0⁢ⅇ-(r-rc)22⁢σ2(1)

and an average intensity of 4.12 mW / cm2 for 60 seconds. Three hours post-exposure, the lens had a +3.25 D change over the central 2.5 mm region of the lens, which is shown in FIG. 1A. The interference fringes were taken at the preir...

example 2

[0058] One of the unique aspects of the above described technology is that we have the ability to first change the power of the IOL over the majority of its aperture and then reirradiate the lens over a small zone (0 to 3 mm) to create a bifocal lens as described in example 1. This embodiment has the advantages of first implanting the light adjustable lens in the patient, waiting the required healing time to let the eye refractively stabilize (typically two to four weeks), measuring the refraction of the patient to determine the necessary correction, if any, to bring the patient to emmetropia, irradiating the lens to change the power of the lens over the majority of the aperture, and then reirradiating a smaller zone in the lens (1.5-3 mm) along the patient's visual axis to provide the necessary multifocality for near and distance viewing.

[0059] As an example of this, a +20.0 D LAL was molded comprising 75 wt % of silicone matrix, 25 wt % of MC, 0.83 wt % PI, and 0.04 wt % UV absor...

example 3

[0061] In the past, the clinical use of bifocal or multifocal IOLs have met with some resistance by patients due to the loss of contrast sensitivity and glare that are inherent to this type of lens' designs. In the past, the only way for a physician to reverse the undesired affects of a previously implanted multifocal or bifocal IOL was to explant the IOL and reinsert it with a standard monofocal IOL. However, the light adjustable lens technology described in this disclosure and previous Calhoun Vision published works provides a means to reverse the multifocal properties of the LAL, effectively returning it to its monofocal condition. Such ability would have the oblivious advantage of reversal without surgical explantation.

[0062] As an example of this process, a +20.0 D LAL was molded comprising 75 wt % of silicone matrix, 25 wt % of MC, 0.83 wt % PI, and 0.04 wt % UV absorber. The preirradiation Fizeau interference fringes are shown in FIG. 4A. This LAL was then irradiated using t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to novel intraocular lenses. The lenses are capable of post-operative adjustment of their optical properties, including conversion from single focal lenses to multifocal lenses.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority benefit of U.S. Provisional Patent Application No. 60 / 494,969 entitled “LIGHT ADJUSTABLE MULTIFOCAL LENSES,” filed Aug. 13, 2003, and is a continuation-in-part of U.S. patent application Ser. No. 10 / 328,859 entitled “LIGHT ADJUSTABLE MULTIFOCAL LENSES,” filed Dec. 24, 2002, the disclosures of which are hereby incorporated herein by reference.TECHNICAL FIELD [0002] The invention relates to optical elements, which can be modified post-manufacture such that different versions of the element will have different optical properties. In one embodiment, it relates to lenses, such as intraocular lenses, which can be converted into multifocal lenses post-fabrication. BACKGROUND OF THE INVENTION [0003] Accommodation, as it relates to the human visual system, refers to the ability of a person to use their unassisted ocular structure to view objects at both near (e.g. reading) and far (e.g. driving) distances. The me...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61F2/16G02C7/06
CPCA61F2/1613A61F2/1618A61F2/1624G02C2202/14A61F2/1635G02C7/06A61F2/1627
Inventor SANDSTEDT, CHRISTIAN A.JETHMALANI, JAGDISH M.CHANG, SHIAO H.
Owner CALHOUN VISION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products