Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dual-core KCF target tracking method based on space-time significance

A target tracking and significant technology, applied in the field of target tracking, can solve the problems of target drift, frame target tracking accuracy decrease, target apparent information deviation accumulation, etc., achieve accurate and efficient tracking, and solve the effect of tracking drift

Active Publication Date: 2019-10-11
WUHAN UNIV OF SCI & TECH
View PDF5 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the KCF algorithm uses linear interpolation to update the target model, resulting in the accumulation of target apparent information deviations in the tracking process, resulting in target drift, which easily leads to a decrease in target tracking accuracy in subsequent frames
In addition, the KCF algorithm uses a single HOG feature. Although it can capture the outline of the target well, it is easy to cause the target drift tracking to fail when the target is occluded.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dual-core KCF target tracking method based on space-time significance
  • Dual-core KCF target tracking method based on space-time significance
  • Dual-core KCF target tracking method based on space-time significance

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0028] In order to further understand the present invention, the preferred embodiments of the present invention are described below in conjunction with examples, but it should be understood that these descriptions are only to further illustrate the features and advantages of the present invention, rather than limiting the claims of the present invention.

[0029] Firstly, the basic principle of KCF is explained.

[0030] The high-speed tracking with kernelized correlation filters (KCF) algorithm is a discriminative tracking method, and it is one of the more efficient tracking algorithms recently. Similar to most tracking algorithms, target detection is performed first and then filter model training is performed. The KCF algorithm is mainly to first train a target initial position model, and then detect whether there is a target in the prediction area of ​​the next frame. If it exists, use the Gaussian kernel to calculate the correlation between two adjacent frames, and determi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention provides a dual-core KCF target tracking method based on space-time saliency, and the method comprises the following steps: S1, extracting a target region, and extracting a salient region through a visual saliency model; s2, HOG features of a target frame and a significant frame are extracted respectively to train parameters of a filter; s3, respectively calculating response distribution maps yk and ys of the filters of the target frame and the significant frame based on the classification of the ridge regression classifier, wherein the coordinate positions corresponding to max (yk) and max (ys are the position of the target frame and the position of the salient frame; S4, calculating the offset of the target frame and the offset of the salient frame based on the position coordinates of the current frame and the previous frame, and carrying out weighted averaging on the offset to obtain a new offset value as the correction offset of the target frame; and S5, obtaining thecorrected target position of the current frame through the position of the previous frame and the correction offset of the target frame. The method is based on the KCF algorithm principle with good speed and accuracy at the present stage, and effectively solves the problem of target tracking drift.

Description

technical field [0001] The invention relates to the field of target tracking, in particular to a dual-core KCF target tracking method based on spatio-temporal saliency. Background technique [0002] Object tracking is one of the most active research fields in computer vision, and it is widely used in motion analysis, behavior recognition, monitoring, and human-computer interaction. The current research on target tracking technology has made great progress, and many tracking algorithms have emerged. The current mainstream tracking algorithms are mainly divided into two categories: [0003] One is the tracking algorithm based on deep learning, which is mainly based on the deep neural network framework for learning. Deep neural network has been applied in object tracking because of its powerful learning function in image feature extraction. For example, the target tracking method based on the fully convolutional neural network not only uses CNN as a tool for feature extracti...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06T7/246G06K9/46G06K9/62
CPCG06T7/246G06T2207/20081G06V10/50G06V10/462G06F18/214G06F18/24
Inventor 邓春华刘小楠朱子奇刘静丁胜
Owner WUHAN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products