Low/High Dose Probiotic Supplements And Methods Of Their Use

a probiotic and high-dose technology, applied in the field of lactic acid bacteria, can solve problems such as poor feed performance, and achieve the effects of reducing pathogenic infection, enhancing feed performance, and reducing pathogenic infection

Inactive Publication Date: 2015-08-13
CHR HANSEN AS
View PDF2 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent text describes how to use a combination of two types of bacteria to reduce harmful infections and improve feed performance in animals. The animals can be fed a specific amount of these bacteria each day for a certain period of time. This method can be cost-effective and effective in reducing harmful infections in animals.

Problems solved by technology

Prior reports have suggested that feed performance may not improve when animals are fed a high dose of the lactic acid producing bacterium.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Low/High Dose Probiotic Supplements And Methods Of Their Use
  • Low/High Dose Probiotic Supplements And Methods Of Their Use
  • Low/High Dose Probiotic Supplements And Methods Of Their Use

Examples

Experimental program
Comparison scheme
Effect test

example 1

Low Dose / High Dose Feeding of Lactobacillus acidophilus / animalis in Combination with a Fixed Dosage of Propionibacterium freudenreichii

[0070]Beef cattle are fed with normal feed such as steam-flaked corn-based diet. Sixty days prior to when the cattle are scheduled to be harvested, all animals start to receive a low dose supplemental DFM in addition to their normal feed. The low dose DFM contains Lactobacillus acidophilus / animalis strain LA51 and Propionibacterium freudenreichii strain PF24 in an amount such that each animal's intake of the Lactobacillus acidophilus / animalis strain LA51 is about 1×107 CFU per day and the intake of Propionibacterium freudenreichii strain PF24 is about 1×109 CFU per day.

[0071]After 30 days on the low dose DFM supplement, the cattle are switched to a feed containing a high dose supplemental DFM in addition to the normal feed. During this high dose period which lasts about 30 days before the animals are slaughtered, the daily intake of Propionibacteriu...

example 2

Low Dose / High Dose Feeding of Lactobacillus acidophilus / animalis Alone to Maximize Feed Performance and Pathogen Reduction

[0072]Beef cattle are fed with normal feed such as steam-flaked corn-based diet. About one hundred and eighty days prior to when the cattle are scheduled to be harvested, all animals start to receive a low dose supplemental DFM in addition to their normal feed. The low dose DFM contains Lactobacillus acidophilus / animalis strain LA51 in an amount such that each animal's intake of the Lactobacillus acidophilus / animalis strain LA51 is about 1×107 CFU per day.

[0073]After 150 days on the low dose DFM supplement, the cattle are switched to a feed containing a high dose supplemental DFM in addition to the normal feed. During this high dose period which lasts about 30 days before the animals are to be slaughtered, the daily intake of Lactobacillus acidophilus / animalis strain LA51 is increased to about 1×109 CFU per day.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Methods and compositions are hereby disclosed for reducing the numbers of E. coli O157:H7, Salmonella or other pathogens in an animal. The methods include administering to the animal a lactic acid producing bacterium at a relatively low dosage in combination with a lactate utilizing bacterium, followed by administration of the lactic acid producing bacterium at a relatively high dosage. The disclosed methods help achieve pre-harvest food safety and enhance feed performance while keeping the total cost relatively low. The preferred lactic acid producing bacterium is Lactobacillus acidophilus / animalis and the preferred lactate utilizing bacterium is Propionibacterium freudenreichii.

Description

RELATED APPLICATIONS[0001]This application is a Continuation application and claims priority to U.S. patent application Ser. No. 12 / 763,775 filed Apr. 20, 2010, which is hereby incorporated by reference in its entirety into this application.BACKGROUND[0002]1. Field of the Invention[0003]The present disclosure pertains to the use of lactic acid bacteria as a feed supplement to enhance the feed performance and to reduce pathogenic infection in an animal, such as a ruminant. More particularly, the disclosure relates to a unique combination of low dose and high dose bacteria supplement to enhance feed performance and to reduce pathogenic infections in the animal.[0004]2. Description of Related Art[0005]Pathogens have been known to cause illnesses in animals, including humans. Pathogens may cause a wide variety of illnesses ranging from mild disorders to fatal diseases. Examples of such illnesses include weight loss, diarrhea, abdominal cramping, and renal failure, among others.[0006]Ext...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K35/747A61K35/74
CPCA61K35/747A61K2035/115A61K35/74A61K38/47A61P31/00A61P31/04Y02A50/30A61K2300/00
Inventor WARE, DOUGLAS R.ANDERSON, PETER
Owner CHR HANSEN AS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products