Citrus pulp fiber systems and gel-based dessert systems
a technology of pulp fiber and pulp pulp, applied in the field of dry blend systems and food systems, can solve the problem of partial hydrogenation increasing the trans fat conten
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Preblend System
[0088]This example describes certain useful preblend systems, including freeze-dried dry blend systems. A series of six combinations were prepared using different proportions of edible oil, citrus pulp fiber, and water, as set forth in Table 1. The oil was a high-oleic rapeseed oil commercially available from Cargill under the trademark CLEAR VALLEY 65, which has a SFC 0 of less than 5 wt %, less than 3% trans fat and less than 15% FDA saturates. The citrus pulp fiber (designated “CPF” in Table 1) was prepared in accordance with the processes described in United States Patent Application Publication No. US 2006 / 0115564.
TABLE 1SolidsSampleEmulsion (wt %)Basis (wt %)No.OilCPFWaterOilCPFObservations1.101990100Acceptable1.251948317Acceptable1.310189919Acceptable1.41518493.756.25Some oil coalescenceupon drying1.520179955Phase separationupon drying1.625174964Phase separationupon drying
[0089]Procedure: The citrus pulp fiber and water were mixed together using a mechanical st...
example 2
Pudding Systems
[0091]A dairy pudding, namely a ready to eat (RTE) finished pudding, prepared with one of the dry blend systems of Example 1 was compared to three other formulations. All four of the formulations had the same basic formula shown in Table 2, but differed in terms of the nature of the fat component. In particular, the fat component of a first formulation (Pudding 2A) was a conventional vegetable bakery shortening sold under the trade name GOLD CUP by Vandemoortele NV of Gent, Belgium. The fat component in a second formulation (Pudding 2B) was CLEAR VALLEY 65 canola oil. The fat component in a third formulation (Pudding 2C) was the dry blend system produced as sample 1.3 in Example 1. The fat component in the fourth and final formulation (Pudding 2D) was 10 parts by weight CLEAR VALLEY 65 canola oil for each part of the same citrus pulp fiber used in Example 1, but these components were added separately rather than forming a dry blend system following the process of Exam...
example 3
Alternative Dry Blend System
[0097]This example describes certain useful preblend systems, including dry blend systems prepared using a fluidized bed dryer. For each of four tests, a wet blend system was prepared using citrus pulp fiber, edible oil, and water. The oil was a high-oleic rapeseed oil commercially available from Cargill under the trademark CLEAR VALLEY 75, which has a SFC 0 of less than 5 wt %, less than 3% trans fat and less than 15% FDA saturates. The citrus pulp fiber is commercially available from Fiberstar, Inc. of Willmar, Minn., USA under the trade name CITRI-FI 100M40. This wet blend system was then dried in a fluidized bed using varying amounts of a particulate starch as a carrier as set forth in Table 3. In each case, the particulate carrier was about 40 wt % POLARTEX 05735 and about 60 wt % POLARTEX 06754, both of which are modified food starches commercially available from Cargill.
TABLE 3Fluidized Bed DryingDried SystemSam-PolartexOilCPFpleEmulsion05735Polart...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com