Modified anion exchange materials with metal inside the materials, method of making same and method of removing and recovering metals from solutions
a technology of anion exchange materials and metals, applied in the direction of ion exchangers, water/sewage treatment by ion exchange, chemistry apparatus and processes, etc., can solve the problems of affecting the quality of the material, the amount of arsenic contamination is naturally occurring, and the percentage of removal can be somewhat problematic, so as to achieve the effect of low cos
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
specific embodiments and examples
DESCRIPTION OF SPECIFIC EMBODIMENTS AND EXAMPLES
Example 1
[0068] Ferric chloride solutions with varying amounts of water, NaCl and HCl were prepared in varying ratios of the ingredients as listed in columns A thru Im. The solutions were then combined with ResinTech SBG1 (Chloride form) and placed into a 1 liter glass beaker fitted with a magnetic stirrer bar. A single source of resin was used in all these experiments. In experiments A thru G, the resin was pre-rinsed with an equal amount of saturated NaCl (“brine”) solution. It was determined by experimentation that this treatment would remove a large amount of water from the resin causing it to shrink substantially. Tests determined that the shrinkage was 14.9%. Sufficient resin was prepared by passing an equal volume of saturated NaCl solution through the resin to supply experiments A thru G. The actual volume of brine treated resin was 85.1% of the designated 200 mL in experiments A thru G. This is equivalent to starting with 200...
example 2
[0072] A solution comprised of 120 milliliters of 36% ferric chloride and 200 milliliters of saturated sodium chloride (26.4% NaCl) was passed slowly through a column of 200 milliliters of ResinTech SBG1. The solution is then drained from the resin bed. Next, a solution containing 60 mL of 50% NaOH and 120 mL of deionized water is added to the resin bed and the mixture of resin and solution was mixed for about 1.5 hours. The solution was then drained from the resin bed and the resin bed was rinsed with deionized water to remove any remaining solution and externally precipitated iron from the resin bed.
example 3
[0073] A solution comprised of 120 milliliters of 36% ferric chloride and 200 milliliters of saturated sodium chloride (26.4% NaCl) and 7 milliliters of 30% HCl was passed through a column of 200 milliliters of ResinTech SBG1, over a period of 8 hours. The solution was then drained from the resin bed leaving less then 10% of the resin showing signs of liquid. Next, a solution containing 60 mL of 50% NaOH and 120 mL of deionized water was added to the resin bed and the mixture of resin and solution was mixed for about 1 hour. The solution was then drained from the resin bed and the resin bed is backwashed, air mixed and rinsed with deionized water to remove any remaining solution and externally precipitated iron from the resin bed. The resulting product is expected to contain approximately 70 grams of iron per liter of resin.
PUM
Property | Measurement | Unit |
---|---|---|
pH | aaaaa | aaaaa |
shrinkage | aaaaa | aaaaa |
volume | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com