Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Water heater usage profiling utilizing energy meter and attachable sensors

a technology of water heaters and sensors, applied in the field of water heater usage profiling utilizing energy meters and attachable sensors, can solve the problems of frequent user intervention, inconvenient implementation, and general consideration of standby loss of energy loss due to heat dissipation, and achieve the effects of reducing standby loss, effective optimization, and saving energy

Active Publication Date: 2021-07-13
AQUANTA INC
View PDF9 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]Embodiments of the present invention relate to a controller system and methods for use in water heating systems that offers significant opportunities for energy saving as well as application in a variety of utility grid integration use cases. The controller system and methods allow control of the water heating system to provide more effective optimization of utility grid integration applications. The controller system can adjust the water heating system in response to energy demand patterns of user fixtures and reduce standby losses at least by minimizing the time when the heated water is maintained at an elevated temperature. The controller system can detect heated water usage pattern and produce a heated water usage profile. The heated water usage profile includes energy content information related to when heated water is typically used and also the quantity used. For example, the controller system can monitor differences of heated water usage between weekdays and weekends, different times of a day, and / or different seasons. The controller system controls water heating systems to operate based on the energy demand curve and adjust the thermal energy output as demand shifts to reduce standby loss. This allows users to monitor their energy demand curve and reduce energy consumption of water heating systems.
[0008]In some embodiments, the controller system can determine the quantity or volume of the used heated water without a mechanical flow meter. Using the thermal energy output of the water heating system, the controller system can detect the timing of each heated water drawing event and measure volume of water used by using information such as temperature differential between heated and cold water. Effectively, this derived metering method allows detailed insights of the system status and the usage at any given time without relying on plumbed-in sensor technology.
[0009]In some embodiments, the controller system can derive temperature differentials between cold and heated water of the water heating system by measuring exterior temperatures of cold water inlet pipes and heated water outlet pipes. The controller system can include cost-effective, accurate, and easy-to-install temperature sensors and provide temperature differentials between the cold and heated water without direct contact with the water body. For example, an attachable sensor such as an attachable cold temperature sensor can be attached to the exterior of the cold water inlet pipe at a location proximate to the reservoir. In some embodiments, an attachable sensor such as a negative-temperature-coefficient (NTC) temperature sensor can be attached to the heated exterior of a water tank, for example, a temperature and pressure (T&P) port / valve of the water heating system. The water pipe temperature sensors can be cost-effective and easy-to-install sensors that are attached to the water pipes through a strap or other attachment methods. In addition, temperature compensation processes can be applied to obtain accurate and real-time measuring of the water temperatures within the heated and cold water pipes. Temperature compensation process can include temperature compensation algorithms that adjust the obtained data from temperature sensors based on various factors such as, for example, locations of the temperature sensors, sensor surface exposure to ambient environment, and any other suitable factors. The temperature compensation process also allows minimum or no thermal insulation to further reduce cost and ease of retrofitting into existing water heaters. Therefore, the temperature compensation process allows for simple and low cost temperature measuring in electric or gas water heaters.

Problems solved by technology

However, this method requires frequent user intervention and is inconvenient to implement.
This energy loss due to heat dissipation is generally considered as standby loss.
Even without productive use of heated water, the water heating system loses energy and periodically requires energy to heat water and maintain the heated water at the desired temperature.
However, monitoring hot water usage and thermal energy output of water heating systems can be challenging.
However, these systems are expensive, inaccurate, difficult to install and maintain.
For example, direct measurement of flow rate requires a mechanical flow meter which has to be installed in line with existing plumbing which is often difficult to install and is subject to failure and requires maintenance.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Water heater usage profiling utilizing energy meter and attachable sensors
  • Water heater usage profiling utilizing energy meter and attachable sensors
  • Water heater usage profiling utilizing energy meter and attachable sensors

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0023]While the present disclosure is made with reference to illustrative embodiments for particular applications, it should be understood that the disclosure is not limited thereto. Those skilled in the art with access to the teachings herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields to which the disclosure would apply.

[0024]FIG. 1 is a schematic representation of a water heating system 100. Water heating system 100 can include water heater tank 102, cold water inlet 103, cold temperature sensor 104, heated water outlet 105, heated temperature sensor 106, T&P valve 107, and water heater controller 108. Heating elements utilizing electricity, gas, oil, or other energy sources can be immersed in water heating system 100 and are not illustrated in FIG. 1 for simplicity. Water heater controller 108 can include internet 110, energy meter 112, relay switch 114, and microcontroller 116. In some embodiments, respec...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present disclosure relate to a controller system and method for use in storage-style water heating systems that offers significant opportunities for energy saving. The controller system can adjust the water heating system in response to energy demand patterns of user fixtures. The controller system can detect quantity of heated water usage and produce a heated water usage profile. The controller system can determine the quantity or volume of the used heated water without a mechanical flow meter. The controller system can include a cost-effective, accurate, and easy-to-install water temperature sensors that provide measurements of the differentials between water temperatures without direct contact with the water. The water temperature sensors can be cost-effective and easy-to-install sensors that are attached to the water pipes through a strap or other attachment methods.

Description

BACKGROUND OF THE INVENTION[0001]Water heating systems are commonly used in residential and commercial buildings to supply heated water. A water heating system draws cold water from a water supply of the building and stores the water in a reservoir. Heating elements such as immersed electric resistance elements within the reservoir heat the stored water to a desired temperature by converting electrical energy to thermal energy. The heated water stored in the reservoir is held at a desired temperature by the heating elements. The water heating system is connected to a water distribution system of the building and provides heated water through water outlets to building fixtures such as faucets, showers, and dishwashers, etc. The desired temperature is generally a consumer-selected temperature that allows the consumer to receive a certain temperature of heated water at the water outlet. While heated water is removed from the reservoir, the water heating system draws cold water into the...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): F24H9/20G05B15/02
CPCF24H9/2007G05B15/02G05B2219/163G05B2219/25168G05B2219/2642G01F1/6888F24D19/1051G01F15/0755G01F1/6847G01F1/6965G01F15/066G01F15/005G01F15/024G01F1/7044G01F9/001F24H15/215F24H15/148F24H15/464F24H15/269F24H15/37F24H15/486F24H15/395F24H15/219F24H15/457F24H15/156F24H15/238F24H15/296
Inventor VAN HOUTEN, ARNOUD BRUINS JAN
Owner AQUANTA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products