Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Joint low-rank constraint cross-view discrimination subspace learning method and device

A technique for discriminant subspace and low-rank constraints, applied in the field of joint low-rank constrained cross-view discriminative subspace learning methods and devices, can solve problems such as ignoring homogeneous and heterogeneous information, and achieve enhanced classification effects, data compactness, and performance robust effect

Active Publication Date: 2019-12-27
HARBIN UNIV OF SCI & TECH
View PDF8 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the discriminative models constructed by these methods only separate the samples of the same view and different categories, and the samples of different views of the same category are close to each other, ignoring the isomorphic and heterogeneous information hidden in different views.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Joint low-rank constraint cross-view discrimination subspace learning method and device
  • Joint low-rank constraint cross-view discrimination subspace learning method and device
  • Joint low-rank constraint cross-view discrimination subspace learning method and device

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0034] The principle and spirit of the present invention will be described below with reference to several exemplary embodiments. It should be understood that these embodiments are given only to enable those skilled in the art to better understand and implement the present invention, rather than to limit the scope of the present invention in any way. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.

[0035] Those skilled in the art know that the embodiments of the present invention can be implemented as a system, device, device, method or computer program product. Therefore, the present disclosure can be embodied in the form of complete hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.

[0036] exemplary method

[0037] figure 1 An exemplary processing flow 100 of the join...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The embodiment of the invention provides a joint low-rank constraint cross-view discrimination subspace learning method and device. The method comprises the following steps: defining an objective function of a double-low rank discrimination subspace learning formula; adopting a supervised regularization term as a strong constraint condition, and re-drawing up the target function; adding a joint heterogeneous regularization term to re-draw up the target function; dividing the image data set into a test set and a training set; utilizing the training set to solve the value of each variable when the objective function value is minimized; solving the objective function to obtain a feature subspace; and projecting the test set through the feature subspace to obtain all features of all types of images in the data set, and finally obtaining the recognition rate of the data set through a classifier. According to the method, heterogeneous regularization items are combined as constraints to construct discriminant items for feature learning, isomorphic and heterogeneous information of a sample can be projected to a subspace to be used in a discriminant learning model of an image recognition and classification task, and model adaptability and robustness are promoted.

Description

technical field [0001] Embodiments of the present invention relate to the field of image classification, and more specifically, embodiments of the present invention relate to a method and device for learning a cross-view discriminant subspace with joint low-rank constraints. Background technique [0002] Cross-view learning has attracted much attention in recent years, since our images are often acquired from various angles or from different sensor devices. In recent years, many cross-view discriminative subspace learning methods have been proposed, which have not only attracted much attention but also been successfully applied in real work. However, the discriminative models constructed by these methods only separate the samples of the same view and different categories, and the samples of different views of the same category are close to each other, ignoring the isomorphic and heterogeneous information hidden in different views. Contents of the invention [0003] In thi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06K9/62
CPCG06F18/213G06F18/24147G06F18/214
Inventor 李骜丁宇孙广路陈德云林克正
Owner HARBIN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products