Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Robustness prospect detection method based on multi-view learning

A foreground detection and robustness technology, applied in the field of robust foreground detection based on multi-view learning, it can solve the problems of indistinguishable foregrounds, not using the spatial and temporal consistency constraints of video sequences, etc., and achieve the effect of accurate segmentation

Inactive Publication Date: 2015-07-08
INST OF AUTOMATION CHINESE ACAD OF SCI
View PDF5 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Second, only the background model is established, and the foreground pixels are identified as outliers, and it is difficult to distinguish the foreground with similar color to the background
Third, no spatio-temporal consistency constraints in video sequences are exploited

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Robustness prospect detection method based on multi-view learning
  • Robustness prospect detection method based on multi-view learning
  • Robustness prospect detection method based on multi-view learning

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0021] The robust foreground detection method based on multi-view learning provided by the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

[0022] figure 1 It is a flowchart of a robust foreground detection method based on multi-view learning provided by an embodiment of the present invention.

[0023] refer to figure 1 , in step S101, the input video is obtained through a time-domain median filter method to obtain a reference background image, and the current image and the reference background image are iteratively searched and multi-scale fused to obtain heterogeneous features.

[0024] In step S102, use the conditional independence of the heterogeneous features to calculate the conditional probability density of the foreground class and the conditional probability density of the background class, and use Bayes’ rule to calculate the posterior The posterior probability and the posterior probability of the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention provides a robustness prospect detection method based on multi-view learning. The method includes the steps that a reference background image is acquired by an input video through time domain median filtering method, and iterative search and multi-scale fusion are conducted on a current image and the reference background image to acquire heterogeneous characteristics; conditional probability density of prospects and conditional probability density of backgrounds are calculated by using condition independence of the heterogeneous characteristics, and a prospect posteriori probability and a background posteriori probability are calculated by using Bayes rules according to prospect likelihood, background likelihood and a prior probability; an energy function of a Markov random field model is established by means of the prospect posteriori probability, the background posteriori probability and space-time consistency constraint, the energy function is minimized by using a belief propagation algorithm, and segmented results of the prospect and the background are obtained. By means of the method, in a complex challenging environment, robustness prospect detection is achieved.

Description

technical field [0001] The invention relates to intelligent video monitoring technology, in particular to a robust foreground detection method based on multi-view learning. Background technique [0002] Intelligent video surveillance is an important means of information collection, and foreground detection or background subtraction is a very challenging underlying problem in intelligent video surveillance research. On the basis of foreground detection, other applications such as target tracking, recognition, and anomaly detection can be realized. The basic principle of foreground detection is to compare the current image of a video scene with a background model and detect regions with significant differences. Although seemingly simple, foreground detection often encounters three challenges in practical applications: moving shadows, illumination changes, and image noise. Motion shadows are caused by light sources being occluded by foreground objects, which are hard shadows ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06K9/00G06K9/46
Inventor 王坤峰王飞跃刘玉强苟超
Owner INST OF AUTOMATION CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products