Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Visual calibration target set method

a technology of target set and calibration method, which is applied in the field of calibration of computer monitor displays, can solve the problems of ineffective reliable tone calibration of crt displays, limited methods that can verify the actual tonality, etc., and achieve high-quality display calibration and high quality

Inactive Publication Date: 2011-02-01
HOLMES JOSEPH
View PDF6 Cites 14 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0034]Second, the current invention provides a precise method to visually determine conformity of a display's tonality to a given standard tone curve, for example a gamma 1.8 curve, which is embodied in one of the preferred calibration target sets of the invention. The current invention clearly reveals conformity with the standard tone curve for each relevant sub-region of the tone scale, thus assuring a visual tone match between the displayed image and the image data when simulations are performed (see FIGS. 13-17). The prior art methods provide only limited ability to verify the actual tonality of a display and its conformity to a standard tone curve, because the methods of the prior art do not reveal the tonality of each relevant subsection of the tone curve. Also, some prior art methods rely on a gridded or halftone pattern of mixed dark and light tones instead of a pattern of alternating horizontal lines, rendering them essentially useless for reliable tone calibration of CRT displays because of limitations of the electronics of CRT displays. The present invention relies primarily on patterns of mixed light and dark tones, which consist of horizontal lines containing only one value, for gamma or tonality assessment. The invention relies primarily on such lined patterns, which complement the nature of currently ubiquitous display hardware used for imaging. The invention also makes it feasible to implement a solution which, in the visual calibration targets, includes the mixing of pixels of different values in individual, horizontal rows of pixels, especially in the Gray Balance Method Two procedure and target. Flat panel displays, which are not in widespread use for imaging, are likely to be much better suited to use with such mixed pixel values in individual horizontal rows of pixels in the visual calibration targets than are CRT displays of the present day. The invention also makes it possible to combine the gamma and gray balance adjustment functions into a single target set which relies on a combination of patterns such as described below in the Gray Balance Method Two targets (see FIGS. 9 and 23).
[0036]The second preferred embodiment of the gray balance capability of the invention (see FIGS. 23, 24 and 25, illustrating what is referred to herein as Gray Balance Method Two, Increased Precision) extends the ability to see even further into the shadows by utilizing a pattern of dots, at the risk of making this embodiment function less ideally with CRT displays, in terms of correct lightness in the blended areas. This embodiment allows double the gray balance matching precision in the three-quartertones, relative to the first embodiment, and brings precise-matching to an even darker value of RGB (40, 40, 40) in this target example designed for use at gamma 2.2. This is more than 5 / 6ths of the way from white to black in the input value scale, and is a tone which, in this case of a gamma 2.2 version of the target, equals only 2% of the absolute luminosity of the white. This second preferred embodiment also increases the precision of the quartertone matching when used with displays having color crossovers in the lighter half of the tone scale. Flat panel displays are more prone to this problem than are CRT displays. Numerous variations on this part of the invention are possible, as necessitated by the nature of the display, the nature of the software interface, or the need for simplicity in the method. For example, more sub-targets can be added at almost any lightness where user control is needed to force correct tonality or gray balance. Also, a single target set of a type broadly similar to the Gray Balance Method Two, Increased Precision target (see FIGS. 23, 24 and 25) can be used for both gamma and gray balance adjustment. By combining tones in new and more complex patterns than the prior art, the invention makes it possible to extend gray balance from the white to a midtone value, and from there to other values, and so on, until all important parts of the tone scale have been reached with the ability to match them to the color of the white.

Problems solved by technology

The prior art methods provide only limited ability to verify the actual tonality of a display and its conformity to a standard tone curve, because the methods of the prior art do not reveal the tonality of each relevant subsection of the tone curve.
Also, some prior art methods rely on a gridded or halftone pattern of mixed dark and light tones instead of a pattern of alternating horizontal lines, rendering them essentially useless for reliable tone calibration of CRT displays because of limitations of the electronics of CRT displays.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Visual calibration target set method
  • Visual calibration target set method
  • Visual calibration target set method

Examples

Experimental program
Comparison scheme
Effect test

second embodiment

[0211]A second preferred embodiment of the gray balance features of the present invention is referred to as the Gray Balance Method Two, Increased Precision target 2300 (see FIGS. 23, 24 and 25). This target is optimized for displays that do not suffer seriously from an inability to display individual white pixels surrounded in the same horizontal row by black pixels with predictable luminosity, which may be much the same as that luminosity produced when the same white pixel is surrounded by white pixels. Flat panel displays may be inherently more capable of this than are CRTs. This second embodiment is also useful for increased gray balance precision on CRTs, despite their potential inability to display pixels that are unaffected by the surrounding pixels within a given horizontal row of pixels (scan line).

[0212]The light or quartertone sub-target 2304 comprises a light or quartertone solid 2307 adjacent to a blended region 2306 having a mixture of midtone pixels and light (prefera...

first embodiment

[0219]Once the midtone sub-target 2303 has been used to match the color of its gray midtone solid 2309 to the hue and chroma of the white, the combination of white and midtone colors used in sub-target 2304 then makes it possible to achieve enhanced accuracy for the light quartertone solid 2307 gray balancing. The values chosen for the quartertone sub target 2045 of the Gray Balance Method Two (FIG. 9) allow the quartertone sub-target 2045 of FIG. 9 to be to make quartertone adjustments prior to accurate adjustment of the midtone sub-target 2024, but these chosen values also assume relative freedom from color crossovers in the light end of the uncalibrated tone scale of the display. This freedom from crossovers is typical of CRTs but less typical of flat panel displays, which usually do suffer considerable color crossovers in the lighter portion of their uncalibrated tone scale.

[0220]Note that the Gray Balance Method Two and Gray Balance Method One targets of the present invention c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A novel process of visual calibration of a computer display or the like in volves adjusting the appearance and relative appearance of targets and su targets displayed on the display. An objective method is provided for determining the precisely optimal brightness setting for CRT displays, which method is also applicable to the setting of the “Black Level” control on some FPDs. A precise method is provided to visually determine conformity of a display's tonality to a given standard tone curve, for example a gamma 1.8 curve, which is embodied in one of the preferred calibration target sets. The need to sense and therefore be able to control and to verify the correct gray balance of the entire tone scale of the display is met. The problem of verifying the similarity of the tone curve in the display profile and that of the actual calibration is solved. By converting a preferred RGB gamma target into CIE Lab image data through an ideal display profile of the correct gamma, a new kind of target is taught.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims the benefit of U.S. Provisional Application No. 60 / 185,969, filed Mar. 1, 2000.FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT[0002]Not applicable.CD-R APPENDIX[0003]This application includes a one-disk CD-R Appendix, the full contents of which are incorporated by reference herein. The disk contains the following files, listed by file name, creation date and file size in bytes: “ColorBlind Video Startup” created Jun. 22, 1999, 100K; “ColorBlind_Video_Startup.exe” created Sep. 16, 1999, 160K; “Complete_Text.txt” created Feb. 22, 2001, 40K; “Contents_of_CD.txt” created Feb. 22, 2001, 4K; “Lab Color Space Profile” created Aug. 4, 1997, 7K; “Prove it!” created Aug. 27, 1999, 4,116K; “Prove it! Installer” created Jul. 20, 1999, 2,251K; “Prove it_Beta.exe” created Jul. 16, 1999, 11,555K; and “Prove_it_Setup.exe” created Nov. 18, 1999, 7,432K.FIELD OF THE INVENTION[0004]This invention relates to the calibration of computer mo...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H04N17/00H04N17/02H04N1/60H04N17/04
CPCH04N1/6033H04N17/02H04N17/04
Inventor HOLMES, JOSEPH
Owner HOLMES JOSEPH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products