Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Downhole coal seam pulse detonation wave directional fracturing permeability-increasing method

a permeability-increasing and pulse detonation wave technology, applied in the direction of fluid removal, borehole/well accessories, mining structures, etc., can solve the problems of difficult gas extraction, complex process, and gas extraction effect, so as to improve the air permeability in the coal mass, improve the air permeability coefficient, and improve the effect of air permeability

Active Publication Date: 2018-04-26
CHINA UNIV OF MINING & TECH
View PDF0 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This approach significantly increases the effective gas extraction area and permeability coefficient, doubling to quadrupling the gas volume extracted, thereby shortening pre-extraction time and ensuring safer, more efficient mining operations.

Problems solved by technology

However, owing to the low air permeability of coal seams with high gas concentration and low air permeability, it is difficult to carry out gas extraction in the conventional way and the gas extraction effect is poor; hence, technical measures for pressure relief and permeability improvement are required.
However, most of the existing techniques have drawbacks such as complex process, high construction workload, high cost, and limited range of application, etc.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Downhole coal seam pulse detonation wave directional fracturing permeability-increasing method
  • Downhole coal seam pulse detonation wave directional fracturing permeability-increasing method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0018]Hereunder the present invention will be detailed in an embodiment with reference to the accompanying drawings.

[0019]The method for permeability improvement for a downhole coal seam by directional fracturing with pulsed detonation waves provided in the present invention employs an explosion-proof high-voltage electrical pulse generator 3, and comprises the following steps:[0020](1) drilling a pulsed detonation borehole 8 from the wall of a roadway to a coal seam 12 according to FIG. 1, and then drilling four pulsed detonation guide boreholes 11 around the pulsed detonation borehole 8, the four pulsed detonation guide boreholes 11 are at the same distance to the pulsed detonation borehole 8, and are parallel to each other; the distance from the pulsed detonation borehole 8 to each of the four pulsed detonation guide boreholes 11 is 4-6 m;[0021](2) connecting the input side of the explosion-proof high-voltage electrical pulse generator 3 to an explosion-proof power cabinet 1 via ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method for permeability improvement for a downhole coal seam by directional fracturing with pulsed detonation waves, which is applicable to gas control in coal seam areas with high gas concentration and low air permeability. The permeability improvement method is as follows: first, drilling a pulsed detonation borehole and pulsed detonation guide boreholes from a coal roadway to a coal seam respectively; then, pushing a positive electrode connected to a positive output side of an explosion-proof high-voltage electrical pulse generator to the bottom of the pulsed detonation borehole and pushing a negative electrode connected to a negative output side of the explosion-proof high-voltage electrical pulse generator to the bottom of the pulsed detonation guide borehole; connecting the pulsed detonation borehole and the pulsed detonation guide boreholes to an extraction pipeline for gas extraction, after electrical pulsed detonation fracturing for the coal seam is carried out. The method disclosed in the present invention utilizes the high instantaneous energy provided by electrical pulsed detonation waves to fracture a coal mass, so as to form a fissure network in the coal mass between the pulsed detonation borehole and the pulsed detonation guide boreholes; thus, the air permeability coefficient of the coal mass can be increased by 200-400 times, the effective influence scope of gas extraction of a single borehole for gas extraction can be enlarged by 3-4 times, the extracted gas volume from the borehole can be increased by 3-8 times, and the coal seam gas pre-extraction time can be shortened effectively.

Description

FIELD OF THE INVENTION[0001]The present invention relates to a method for permeability improvement for a downhole coal seam by directional fracturing with pulsed detonation waves, which is especially applicable to gas control in coal seam areas with high gas concentration and low air permeability, for the purpose of improving the gas extraction efficiency in a borehole and realize quick elimination of gas outburst in the coal seam.BACKGROUND ART[0002]Gas extraction is a major measure for solving a gas gush problem and preventing gas outburst in the mining process of a coal seam with high gas concentration and low air permeability. However, owing to the low air permeability of coal seams with high gas concentration and low air permeability, it is difficult to carry out gas extraction in the conventional way and the gas extraction effect is poor; hence, technical measures for pressure relief and permeability improvement are required. Coal seam fracturing and permeability improvement t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): E21B43/26E21B43/30
CPCE21B43/26E21B43/30E21F7/00E21C37/12
Inventor LIN, BAIQUANYAN, FAZHIZHU, CHUANJIEGUO, CHANGZOU, QUANLELIU, TINGHONG, YIDUYAO, HAO
Owner CHINA UNIV OF MINING & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products