Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Penile Pump with Side Release Mechanism

Inactive Publication Date: 2009-11-19
AMS RES CORP
View PDF99 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0014]The present invention provides various features which taken alone or in combination with one another provide for an improved pump and valve assembly for an implantable prosthesis. The present pump and valve assembly includes a pump bulb that must be differentiated from the valve housing when inflation of the cylinders is desired. The pump bulb itself has dimensions that are somewhat different than the remainder of the housing. However, to supplement differentiation between the bulb and the valve housing, the valve housing is provided with a textured surface so that even through tissue the patient is able to readily discern which area comprises the pump bulb and which area comprises the valve housing. This is important in that the pump bulb is compressed for inflation while the valve housing is compressed for deflation.
[0017]Furthermore, since the patient can grasp the valve housing along the sides of the length, i.e., surfaces with larger surface area, less pressure need be applied to achieve the successful opening of the check valves. In other words, by increasing the surface area that is engaged by the patient's fingers and appropriately positioning the actuating bar, less force need be exerted by the patient to achieve the desired result.
[0018]The textured surface of the valve housing not only helps the patient identify the correct portion of the pump and valve assembly to actuate, it also serves to prevent slippage once the patient begins to compress the housing. Thus, what is achieved is an efficient and ergonomic pump and valve assembly for an implantable prosthesis. The pump and valve assembly can advantageously be formed from a minimal number of components. That is, all that need be molded are a valve block and a corresponding pump bulb which surrounds the valve block. The various check valves can be inserted into the valve block and then placed within the interior of the pump bulb, thus forming a completed assembly. This results in certain manufacturing efficiencies, thus reducing both cost and time of production.
[0019]To further improve the operational efficiency of the pump and valve assembly, the check valve is made of a metal material with a plastic member disposed over a segment of the metal material. The plastic segment of the check valve prevents undesired frictional metal on metal contact with the actuating bar, and prevents premature wearing of the contact point of the two components.
[0020]To further improve the life of the valve assembly, ribs, that extend across a bend, are added to the actuating bar. This modification increases the strength and stiffness of the spring and prevents the actuating arm from deflecting during actuation. In turn, full axial travel of the check valve is ensured. Increasing the strength of the bend also prevents permanent deformation of the spring when normal deflection occurs during actuation of the valve assembly. Another rib is disposed along the actuation face of the actuating bar to limit deformation of the actuation face during actuation of the valve assembly.
[0021]To improve the ease of deflation, a stiff poppet support wraps around the valve body and rests against a portion of the check valve. The poppet support has a shelf that provides smooth surface for a portion of the check valve to slide along. The poppet support contacts the check valve and prevents undesirable sideways movement of the check valve against the valve body. The positioning and configuration of the poppet support thus allows the check valve to easily move axially into the valve body to an open position. This results in improved operational efficiency of the check valve and an extended operating life.

Problems solved by technology

This compression causes actuation of the internal check valves.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Penile Pump with Side Release Mechanism
  • Penile Pump with Side Release Mechanism
  • Penile Pump with Side Release Mechanism

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037]Referring to FIG. 1, a pump and valve assembly is illustrated and generally referred to as 10. Pump and valve assembly 10 includes two different sections: valve housing 12 and pump bulb 15. Pump bulb 15 is a compressible member, defining a chamber more clearly shown in FIG. 2. Valve housing 12 is fluidly coupled to pump bulb 15 and contains the various other working components of pump and valve assembly 10. Pump and valve assembly 10 will be fluidly coupled to a reservoir and a pair of cylinders (not shown). This is accomplished through tubing connected to reservoir coupling 25 and cylinder couplings 30, which are integral with valve housing 12. Pump and valve assembly 10 is configured such that pump bulb 15 extends from one end of valve housing 12, while reservoir coupling 25 and cylinder couplings 30 extend from the other. Thus, when implanted in the patient, reservoir coupling 25 and cylinder couplings 30, and the fluid tubing they are coupled to, are oriented toward the pa...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A pump and valve assembly for an implantable prosthesis is provided with an internal actuating bar positioned such that when any portion of the housing is compressed, the check valves within are opened allowing for deflation of the cylinders. The pump and valve assembly also includes a textured surface over a portion of the housing to allow for quick identification of the component, as well as to make it easier for the patient to grasp it. The valve assembly further comprising an actuating bar which has ribs to enhance the spring force applied to a flow valve, a support structure to support and appropriately position the actuating bar, and a check valve made of metal with a segment covered with a plastic material.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application is a continuation application of Ser. No. 10 / 820,660, filed Apr. 8, 2004, which is a divisional application of Ser. No. 10 / 006,335, filed on Dec. 3, 2001 (Now U.S. Pat. No. 6,723,042), entitled “PENILE PUMP WITH SIDE RELEASE MECHANISM,” which is a continuation-in-part of related patent application Ser. No. 09 / 749,075 entitled “PENILE PUMP WITH SIDE RELEASE MECHANISM” which was filed on Dec. 27, 2000, and claims the priority of provisional application Ser. No. 60 / 295,326 entitled “PENILE PUMP IMPROVEMENTS” which was filed Jun. 1, 2001 (the entire contents of each of which are herein incorporated by reference).BACKGROUND[0002]This invention generally relates to a pump and valve assembly for inflating a prosthesis. More particularly, the invention relates to pressure-based mechanisms that inhibit spontaneous inflation of the prosthesis, including stiffening and support mechanisms that also improve the function of the valve.[...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61F5/00A61F2/26
CPCA61F2/26
Inventor ALMLI, JOHN G.KUYAVA, CHARLES C.MORNINGSTAR, RANDY L.WATTS, KEVIN R.
Owner AMS RES CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products