Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Image processing apparatus, image processing method, and image processing program

Inactive Publication Date: 2006-06-29
SEIKO EPSON CORP
View PDF18 Cites 33 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006] An advantage of the invention is that, even in the case of low-resolution sampled image data, high-accuracy statistic values are determined to derive a correction amount appropriate for image processing.
[0007] According to an aspect of the invention, image processing apparatus includes the following elements. An image data obtaining unit obtains image data. A sampling unit samples the image data. A statistic value determining unit determines a statistic value based on statistic information in a histogram with respect to a grayscale value of image data that is obtained by performing rough quantization and linear interpolation on the sampled image data. A correction-amount determining unit determines a correction amount to be used for image processing based on the statistic value. An image processing unit performs the image processing according to the correction amount.
[0008] The image processing apparatus is incorporated in, for example, a portable device, a display device, a color printer, or the like, and performs image processing on image data obtained from the outside based on statistic values of the image data. The image processing apparatus samples the image data at a low resolution, performs rough quantization on the sampled image data, and performs linear interpolation of the number of pixels, thereby generating a histogram. The image processing apparatus determines a correction amount based on statistic values that are determined from statistic information in the generated histogram, and performs image processing on the image data. Thus, in the case of low-resolution sampled image data, the accuracy of the statistic values is high and the correction amount can correctly be derived.
[0009] According to another aspect of the invention, an image processing method includes obtaining image data, sampling the image data, determining a statistic value based on statistic information in a histogram with respect to a grayscale value of image data that is obtained by performing rough quantization and linear interpolation on the sampled image data, determining a correction amount to be used for image processing based on the statistic value, and performing the image processing according to the correction amount.
[0010] According to another aspect of the invention, an image processing program executed by an image processing apparatus including a control circuit causes the image processing apparatus to function as an image data obtaining unit that obtains image data, a sampling unit that samples the image data, a statistic value determining unit that determines a statistic value based on statistic information in a histogram with respect to a grayscale value of image data that is obtained by performing rough quantization and linear interpolation on the sampled image data, a correction-amount determining unit that determines a correction amount to be used for image processing based on the statistic value, and an image processing unit that performs the image processing based on the correction amount.
[0011] The image processing method and the image processing program also allow a high-accuracy statistic value and a precise correction amount to be derived in the case of low-resolution sampled image data.

Problems solved by technology

In the related art, however, an operation of determining statistic values of image data places a large load on a control circuit.
If the image data is sampled at a low resolution to determine the statistic values in order to reduce the load on the control circuit, the resolution of the sampled image data is low, and the accuracy of the statistic values is also low.
It is therefore difficult to correctly derive the correction amount.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Image processing apparatus, image processing method, and image processing program
  • Image processing apparatus, image processing method, and image processing program
  • Image processing apparatus, image processing method, and image processing program

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0034] An image processing apparatus and method and a display device and method according to an embodiment of the invention will be described below with reference to the drawings.

Schematic Configuration of Image Processing System

[0035] An image processing apparatus (display device) according to an embodiment of the invention and an image processing system including the image processing apparatus (display device) will be described with reference to FIGS. 1 and 2. FIG. 1 schematically illustrates the configuration of the image processing system including the image processing apparatus according to this embodiment.

[0036] The image processing system includes a digital camera 10, a portable device 20, a display device 30, and a color printer 50. The digital camera 10 serves as an input device that generates image data. The portable device 20 serves as an image processing apparatus that performs image processing on image data GD using image processing control information GI associated...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An image processing apparatus includes the following elements. An image data obtaining unit obtains image data. A sampling unit samples the image data. A statistic value determining unit determines a statistic value based on statistic information in a histogram with respect to a grayscale value of image data that is obtained by performing rough quantization and linear interpolation on the sampled image data. A correction-amount determining unit determines a correction amount to be used for image processing based on the statistic value. An image processing unit performs the image processing according to the correction amount.

Description

BACKGROUND [0001] 1. Technical Field [0002] The present invention relates to techniques for performing image processing on image data using sampled image data. [0003] 2. Related Art [0004] There have been proposed techniques for associating image data with image processing control information containing image processing conditions of the image data, as disclosed in, for example, JP-A-2003-52002. The image processing control information is configured so that, depending on the combination of the image generating device, e.g., a digital still camera, and the output device, e.g., a printer, the quality of images output from the output device can be improved. By performing image processing (image-quality adjustment) on the image data according to the image processing control information (image processing conditions) associated with the image data, an image processing apparatus obtains output images reflecting the image output characteristics of the output device. In the image processing ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06K9/00
CPCH04N1/4074H04N1/62H04N9/77H04N9/64
Inventor KURUMISAWA, TAKASHIISHIDA, MASANORI
Owner SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products