Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

CNE10 gene knockout in epidermal stem cells by using CRISPR-Cas system

A technology of epidermal stem cells and cells, which is applied in the field of establishment of epidermal stem cell lines, can solve the problem of siRNA not stable inheritance, etc., and achieve high knockout efficiency, good knockout effect, and stable passage

Active Publication Date: 2018-10-26
江西汉氏联合干细胞科技有限公司
View PDF2 Cites 27 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0007] The purpose of the present invention is to provide a kind of epidermal stem cell with CNE10 gene knockout, which effectively overcomes the technical defect that the prior art uses siRNA for interference and cannot stably inherit

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • CNE10 gene knockout in epidermal stem cells by using CRISPR-Cas system

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0022] Embodiment 1, construction of CRISPR expression vector

[0023] gRNA design

[0024] According to the gene sequence of the target gene, through the applicant's unique optimization design method, the specific form of sgRNA obtained through specific screening is as follows:

[0025] CNE10-sgRNA1:5'to 3'gacgtcggattccagcctcc

[0026] CNE10-sgRNA2:5'to 3'ccagcgcctggggctctccg

[0027] According to the above gRNA, add CACC to its 5' end to obtain the forward oligonucleotide sequence, add AAAC to the 5' end of its complementary strand to obtain the reverse oligonucleotide sequence, and synthesize forward and reverse oligonucleotides respectively Nucleotide sequence, and then denature and anneal the synthesized sequence to obtain a double-stranded DNA fragment with BbsI sticky ends, as follows: Forward: 5'-CACCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...

Embodiment 2

[0031] Example 2 Cloning of synergistic protein ESCS-higher and construction vector

[0032]Clone the synergistic protein ESCS-higher gene, and obtain the gene sequence described in SEQ ID NO: 1 through the method of whole gene synthesis. Using this sequence as a template, according to the sequences of the upstream and downstream primers are 5'-atgatatactttattagaat-3', 5 '-tcaagggatttccatttctc-3', primers and whole genome were synthesized by Shanghai Sangon Co., Ltd. The target gene fragment of ESCS-higher gene was amplified by PCR reaction. The amplification reaction system was as follows: 95°C, 40s, 57°C, 1min, 72°C, 1min, 72°C, 10min, cycled 35 times, and the PCR product was produced by Shanghai Shenggong Co., Ltd. Sequencing was performed, and the binding was a complete match to SEQ ID NO:1 by sequencing. Subsequently, the target gene amplified by PCR was connected to the empty vector lentiviral vector pHIV-CS-CDF-CG-PRE, and the recombinant lentiviral vector was identifi...

Embodiment 3

[0033] Example 3 Application Analysis of CRISPR / Cas9 in Epidermal Stem Cells

[0034] The sgRNA expression plasmid prepared in Example 1 and the known Cas9 expression plasmid were co-transfected into epidermal stem cells. Using liposome transfection method, the transfection epidermal stem cell transfection system and reagents constructed were Lipofectamine TM 2000 (Invitrogen Company), the detailed steps of transfection refer to the transfection instructions. Stem cells not transfected with the synergistic gene of Example 2 were used as a positive control.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention provides CNE10 gene editing for epidermal stem cells by using a CRISPR-Cas system, and particularly relates to establishment of an epidermal stem cell system with GNE10 gene knocked out.Through the establishment, two specific gRNA (guide ribose nucleic acids) are obtained, editing efficiency of the CRISPR-Cas system aiming at the GNE10 gene in the epidermal stem cells can be increased remarkably. An obtained epidermal stem cell plasmid with CNE10 gene knockout is good in hereditary stability and high in targeting efficiency.

Description

technical field [0001] The present invention provides a CNE10 gene editing method for epidermal stem cells using a CRISPR-cas system, and in particular relates to the establishment of a CNE10 gene knockout epidermal stem cell line. Background technique [0002] Epidermal stem cells (Epidermal stem cells, EpiSCS) are stem cells with self-proliferation and multi-lineage differentiation potential. Its normal proliferation and differentiation are the basic requirements for maintaining the structural and functional integrity of the skin and its appendages (sweat glands, hair, sebaceous glands). Under physiological conditions, epidermal stem cells differentiate into a stem cell and a transit amplifying cell (TA cell) through asymmetric division, and the TA cell differentiates into post-mitotic cells (Post-mitotic cells) and terminal cells after multiple divisions. Differentiated cells (terminally-differentiated cells) to supplement the continuous renewal of epidermal cells. Studi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12N15/113C12N15/90C12N9/22
CPCC12N9/22C12N15/113C12N15/907C12N2310/10
Inventor 杨骏朱成光
Owner 江西汉氏联合干细胞科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products