Matching design method for pre-clamping stress of double-reinforced-root non-equal-thickness variable-cross-section leaf springs
A non-equal thickness, variable section technology, applied in spring/shock absorber design features, computer-aided design, design optimization/simulation, etc. The problems of tight stress and clamping stiffness are complicated to calculate, so as to reduce the design and test costs, improve the design level, and speed up the development speed.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0028] Embodiment 1: The width b=60mm of a certain double-strengthened root non-equal-thickness parabolic variable-section leaf spring, and half the effective length L T =575mm, modulus of elasticity E=200GPa, half length L of the straight section of the root clamped by saddle bolt 0 =50mm, horizontal length Δl of oblique section at the end 1 =30mm, the horizontal length of the oblique line section at the root Δl 2 =40mm, the horizontal distance l from the root of the oblique line section at the root to the end point of the leaf spring 2 =L T -L 0 =525mm, the horizontal distance l from the root of the parabola segment to the end point of the leaf spring 2p = l 2 -Δl 2 =495mm. The number of leaf springs n=3, the thickness h of the straight section at the root of each leaf spring 21 =18.5mm, h 22 = 18mm, h 23 =17.5mm; root thickness h of parabola segment 21p = 17.5 mm, h 22p = 17mm, h 23p = 16.5mm, the end thickness h of the parabola segment 11p = 8mm, h 12p = 7mm...
Embodiment 2
[0052] Embodiment 2: the width b=60mm of a certain double-strengthened root non-equal-thickness parabolic variable-section leaf spring, and half the effective length L T =575mm, modulus of elasticity E=200GPa, half length L of the straight section at the root of the saddle bolt clamping distance 0 =50mm, horizontal length Δl of oblique section at the end 1 =30mm, the horizontal length of the oblique line section at the root Δl 2 =40mm, the horizontal distance l from the root of the oblique line section at the root to the end point of the leaf spring 2 =L T -L 0 =525mm, the horizontal distance l from the root of the parabola segment to the end point of the leaf spring 2p = l 2 -Δl 2 =495mm. The number of leaf springs n=4, the thickness h of the straight section at the root of each leaf spring 21 = 17mm, h 22 = 16.5mm, h 23 = 16mm, h 24 =16mm; root thickness h of parabola segment 21p = 16mm, h 22p = 15.5mm, h 23p = 15mm, h 24p = 15mm; end thickness h of the parabo...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com