Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Radio communication terminal and radio communication method

a radio communication terminal and radio communication technology, applied in the field of radio communication terminals and radio communication methods, can solve the problems of ue not being able to maintain communication with enb, the measurement operation of measuring the quality of rn does not function at ue, and the loop-back interference occurs, so as to achieve high accuracy and measure the quality of communication

Active Publication Date: 2014-04-15
SUN PATENT TRUST
View PDF8 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0039]According to the radio communication terminal and the radio communication method of the present invention, as UE performs measurement for handover in subframes, which are not used as the backhaul in a plurality of RNs connected to one eNB, where signals from the plurality of RNs are transmitted, it is possible to measure quality in communication with a handover destination with high accuracy.

Problems solved by technology

Here, when the backhaul channel and the access channel are allocated in the same frequency bandwidth, if RN performs transmission and reception at the same time, loop-back interference occurs.
However, if RN transmits no signal in the subframes where RN serves as the backhaul channel, a problem occurs that a measurement operation of measuring the quality of RN does not function at UE of LTE which has not ascertained the presence of RN.
In this regard, in a mobile communication system, a situation occurs in which, when UE communicates with a certain eNB, received power from eNB is lowered due to movement of UE, change in the surrounding environment or the like and thus UE cannot maintain communication with eNB.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

first example

[0118]As a first example of the method of detecting the subframes where measurement should be performed using the received power, the following method is used. Firstly, UE measures the received power over the plurality of subframes, and detects a subframe where the received power is the largest. UE sets a threshold which becomes a predetermined power difference with reference to the largest received power, and detects a subframe where the received power is lower than the threshold as the “MBSFN subframe that RN uses as the backhaul” in the neighbor RNs. UE sets subframes except for the detected “MBSFN subframe that RN uses as the backhaul” in the neighbor RNs, as the subframes where measurement should be performed.

[0119]For example, where the largest received power of the detected subframe is Pmax, the predetermined power difference is Pd, the threshold is Pth, and the received power of the n-th subframe is Pn, UE detects a subframe n which satisfies the following Formula 1 as the “...

second example

[0121]Further, as a second example of the method of detecting the subframes where measurement should be performed using the received power, the following method may be also used. Firstly, UE measures and averages the received power over the plurality of subframes, and detects an average received power. UE sets a threshold which becomes a predetermined power difference with reference to the average received power, and compares the threshold and the received power of each subframe. Further, UE detects a subframe where the received power is lower than the threshold as the “MBSFN subframe that RN uses as the backhaul” in the neighbor RNs. UE sets subframes except for the detected “MBSFN subframe that RN uses as the backhaul” in the neighbor RNs, as subframes where measurement should be performed.

[0122]For example, where the average received power is Pave, UE detects a subframe n which satisfies the following Formula 2 as the “MBSFN subframe that RN uses as the backhaul” in the neighbor ...

third example

[0124]Further, as a third example of the method of detecting the subframes where measurement; should be performed using the received power, the following method may be also used. Firstly, UE detects the received power in subframes which are not the “MBSFN subframe that RN uses as the backhaul” in RN1 or RN2. UE sets a threshold which becomes a predetermined power difference with reference to the received power, and compares the threshold and the received power Pn of each subframe. Further, UE detects a subframe where the received power is lower than the threshold as the “MBSFN subframe that RN uses as the backhaul” in the neighbor RNs. For example, as the subframes except for the “MBSFN subframe that RN uses as the backhaul”, the subframes having subframe numbers 0, 4, 5 and 9, which are not originally set as the MBSFN subframe, are set.

[0125]For example, when the received power of the subframe which is not the “MBSFN subframe that RN uses as the backhaul” in RN1 or RN2 is Pnon-MBSF...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed: and a transmitter which transmits a result, of the measurement to the base station or the relay node.

Description

TECHNICAL FIELD[0001]The present invention relates to a radio communication terminal and a radio communication method which transmit, and receive data to and from a base station.BACKGROUND ART[0002]The 3GPP (3rd Generation Partnership Project) which is an international mobile communication standardization group has started the standardization of LTE-Advanced (Long Term Evolution-Advanced, LTE-A) as a fourth generation mobile communication system. As disclosed in Non Patent Literature 1, in LTE-A, a relay technology of relaying radio signals by using a relay node CRN) has been studied with the goals of coverage expansion and capacity improvement.[0003]The relay technology will be described with reference to FIG. 12. FIG. 12 is a diagram illustrating a system which relays radio signals using the relay technology. In FIG. 12 eNB represents a base station, RN represents a relay node, and UE represents a radio communication terminal. Further, UE1 represents a radio communication terminal...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): H04W4/00
Inventor YUDA, YASUAKINAKAO, SEIGOHORIUCHI, AYAKONISHIO, AKIHIKOIMAMURA, DAICHIMIYOSHI, KENICHI
Owner SUN PATENT TRUST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products