Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Vacuum processing apparatus and method

a vacuum processing and vacuum technology, applied in the field of vacuum processing apparatus and method, can solve the problems of affecting the production efficiency affecting the quality of vacuum processing equipment, and long processing time, so as to prevent organic contamination of target objects

Inactive Publication Date: 2011-02-08
TOKYO ELECTRON LTD
View PDF8 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]It is, therefore, an object of the present invention to provide a vacuum processing apparatus and method capable of preventing organic contamination of a target object in a vacuum transfer chamber.
[0009]In accordance with the apparatus of the first aspect, even if organic substances are scattered from organic materials in the vacuum transfer chamber due to degasification, they are diluted by the purge gas supplied from the purge gas supply unit and the amount of the organic substances attached to the target object can be reduced. In particular, under a high vacuum, much more organic substances are likely to be attached to the target object while the amount of the organic substances attached thereto can be significantly reduced by controlling the flow rate of the purge gas. Preferably, an upper limit of the pressure range is set to 66.7 Pa (500 mTorr) or less, and the flow rate of the purge gas is controlled to 10 sccm or more.
[0012]In accordance with the apparatus of the second aspect, even if organic substances are scattered from organic materials in the load-lock chamber due to degasification, they are diluted by the purge gas supplied from the purge gas supply unit and the amount of the organic substances attached to the target object can be reduced. In particular, under a high vacuum, much more organic substances are likely to be attached to the target object while the amount of the organic substances attached thereto can be significantly reduced by controlling the flow rate of the purge gas. Preferably, an upper limit of the pressure range is set to 66.7 Pa (500 mTorr) or less, and the flow rate of the purge gas is controlled to 10 sccm or more. Further, it is preferable to set the internal pressure of the load-lock chamber higher than that of the vacuum transfer chamber in order to prevent the atmosphere in the vacuum transfer chamber close to the vacuum processing chamber from diffusing into the load-lock chamber.
[0014]In accordance with the apparatus of the third aspect, even if organic substances are scattered from organic materials in the vacuum transfer chamber due to degasification, they are diluted by the purge gas supplied from the purge gas supply unit and the amount of the organic substances attached to the target object can be reduced. In particular, under a high vacuum, much more organic substances are likely to be attached to the target object while the amount of the organic substances attached thereto can be significantly reduced by controlling the flow rate of the purge gas. Preferably, a lower limit of the flow rate is set to 10 sccm or more and the internal pressure of the vacuum transfer chamber is controlled to 66.7 Pa (500 mTorr) or less.
[0017]In accordance with the apparatus of the fourth aspect, even if organic substances are scattered from organic materials in the load-lock chamber due to degasification, they are diluted by the purge gas supplied from the purge gas supply unit and the amount of the organic substances attached to the target object can be reduced. In particular, under a high vacuum, much more organic substances are likely to be attached to the target object while the amount of the organic substances attached thereto can be significantly reduced by controlling the flow rate of the purge gas. Preferably, an upper limit of the pressure range is set to 66.7 Pa (500 mTorr) or less, and the flow rate of the purge gas is controlled to 10 sccm or more. Further, it is preferable to set the internal pressure of the load-lock chamber higher than that of the vacuum transfer chamber in order to prevent the atmosphere in the vacuum transfer chamber close to the vacuum processing chamber from diffusing into the load-lock chamber.

Problems solved by technology

However, the vacuum processing apparatus has a problem of organic contamination that organic substances generated from a moving part or a frictional part in the vacuum transfer chamber are attached to the target object.
In particular, if the vacuum processing apparatus has a cluster tool type structure, an overall processing time, i.e. a stay time of the target object, takes long due to many processes in the system.
Such organic attachment or contamination deteriorates the reliability of processes such as film forming and etching processes in the vacuum processing chamber, resulting in a poor production yield.
Furthermore, incubation time increases in the film forming process, which leads to increase of variation in thickness.
Particularly, if organic substances which are produced or scattered from grease applied to a vacuum sealing O-ring or bearing, which are generated from a transfer mechanism, e.g., a transfer belt, or which are detached from surfaces of components in the processing chamber after being attached thereto due to poor cleaning, are attached to the surface of the target object, it is hard to remove the organic substances and a defective area on a target surface becomes larger.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0026]Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[0027]FIG. 1 shows an overall configuration of a vacuum processing apparatus in accordance with a first preferred embodiment of the present invention. The vacuum processing apparatus, a so-called cluster tool, is installed in a clean room, and includes, e.g., process modules PM1, PM2, PM3 and PM4 and two load-lock modules LLM1 and LLM2 disposed around a hexagonal transfer module TM having a transfer chamber 10 in a cluster shape.

[0028]Each of the process modules PM1, PM2, PM3 and PM4 has a vacuum processing chamber 12 whose internal pressure is independently set and controlled. The load-lock modules LLM1 and LLM2 each include a load-lock chamber 14 whose inside is capable of being switched selectively into an atmospheric state or a depressurized state, as will be described below. The vacuum processing chambers 12 of the process modules PM1, PM2, PM3 and PM4...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
internal pressureaaaaaaaaaa
vacuum pressureaaaaaaaaaa
vacuum pressureaaaaaaaaaa
Login to View More

Abstract

A gas exhaust unit evacuates the inside of a vacuum transfer chamber at a constant exhaust rate. An gas exhaust valve is kept normally open, and a purge gas (N2 gas) is supplied from a purge gas supply source into the vacuum transfer chamber via a mass flow controller (MFC) and an opening / closing valve. A main control unit controls a pressure in the vacuum transfer chamber to be within a specified range through a flow rate set value for the MFC while monitoring a pressure in the vacuum transfer chamber via a vacuum gauge. The main control unit determines occurrence of abnormality when the pressure exceeds a specified upper limit and then takes such actions as changing a flow rate set value for the MFC, giving an alarm and stopping the operation of a vacuum processing apparatus.

Description

[0001]This application is a Continuation Application of PCT International Application No. PCT / JP 2007 / 050271 filed on Jan. 11, 2007, which designated the United States.FIELD OF THE INVENTION[0002]The present invention relates to a vacuum processing apparatus and method for performing a desired process on a target object in a vacuum state; and, more particularly, to a technology for controlling an atmosphere in a vacuum transfer chamber where a target object is transferred to and from a vacuum processing chamber under a reduced pressure.BACKGROUND OF THE INVENTION[0003]In manufacturing a semiconductor device or a flat panel display (FPD), various processes such as a film forming process, a heat treatment process, a dry etching process, a cleaning process and the like are performed in a vacuum vessel by using required processing gases. For example, apparatuses for performing such vacuum processes are disclosed in Japanese Patent Laid-open Publication Nos. 2000-127069 and H3-087386). I...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): C23C16/00H01L21/306C23F1/00
Inventor KONDO, MASAKIHAYASHI, TERUYUKISAITO, MISAKO
Owner TOKYO ELECTRON LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products