Ablation probe with stabilizing member

a technology of stabilizing member and probe, which is applied in the field of surgical ablation probe, can solve the problems of unsuitable for a large number of patients and the surgical technique is quite traumatizing, and achieve the effects of facilitating the holding of the stabilizer and the exposed electrode, determining the effectiveness of the lesion formation, and facilitating shaping

Inactive Publication Date: 2009-11-05
CARDIMA
View PDF6 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]The stabilizing member generally has a proximal section and a distal section. The distal section has an inner chamber configured to receive the distal shaft section of the ablation member and a vacuum lumen leading to and in fluid communication with the inner chamber. A fluid delivery lumen may be provided that is in fluid communication with the inner chamber to provide fluid to the chamber. The distal section of the stabilizing member preferably has a stylet or obturator to stiffen the distal section and facilitate advancement of the assembly to the desired intracorporeal site. The stylet or obturator may be slidably disposed within the fluid delivery lumen or it may be provided with a separate lumen. The stylet or obturator is usually removed prior to final placement of the assembly at the intracorporeal site.
[0010]The stabilizing member has a surface configured to engage the patient's heart wall while pressing at least one ablation electrode against the exterior of the patient's heart wall to ensure electrical conducting engagement with the heart wall tissue when high frequency energy is applied to the one or more electrodes. Preferably, the stabilizing member has a vacuum lumen extending along at least a substantial length thereof and has at least one vacuum port which is in fluid communication with the vacuum lumen extending therein. Application of a vacuum within the interior of the stabilizer can aspirate fluid within or adjacent to the stabilizer and can also aid in securing the ablation probe against the patient's heart wall.
[0013]In one embodiment, the shape or deflection of the distal shaft section of the ablation member is controllable by a member on the proximal end of the device to form the desired configuration within a patient's body. This allows the ablation member to form one or more effective lesions of various shapes which replicate the MAZE procedure.
[0015]In one embodiment, the stabilizer member is secured to the distal end of the ablation member and the assembly thus formed is introduced into the patient's thoracic cavity through an opening in the patient's chest wall, preferably through a trocar disposed in an intercostal space between the patient's ribs, preferably on the left side of the patient. The assembly is advanced within the patient's thoracic cavity and deployed so that the stabilizing member engages the exterior surface of the patient's heart. The epicardial space is usually small enough to hold the distal portion of the ablation assembly at the desired location. However, the application of a vacuum to the interior chamber(s) of the stabilizing member can facilitate holding the stabilizer and the exposed electrodes of the ablation device against a surface of heart wall, even when the heart is beating. The distal shaft section of the ablation member is preferably deflectable to facilitate shaping the distal portion of the assembly to form a lesion of a desired shape and location. Additionally, the distal end of the stabilizer member preferably has a light emitting element, such as a light emitting diode (LED) which allows the physician or other operating room personnel to locate the distal end of the stabilizer, ever when the distal tip of the stabilizer is disposed between the pericardial and epicardial layers of the patient's heart. If the distal end of the assembly emitting the light is not directly accessible, such as when disposed between the pericardial and epicardial layers, the physician can readily lance the pericardium, insert forceps and pull the distal end of the assembly to a desired region of the patient's heart. With the distal shaft section of the ablation member in a desired configuration, the electrodes are activated with electrical energy (RF) to form a linear or curvilinear lesion within the wall of the patient's heart. The ablation electrodes or separate sensing electrodes may be used to detect electrical activity from within the heart wall in order to determine the effectiveness of the lesion formation in treating the atrial fibrillation or flutter.

Problems solved by technology

However, the surgical technique is quite traumatic and is not suitable for a large number of patients.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Ablation probe with stabilizing member
  • Ablation probe with stabilizing member
  • Ablation probe with stabilizing member

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0047]FIGS. 1-6 illustrate a surgical ablation probe assembly 10, embodying features of the invention, which generally comprises an ablation member 11 and a stabilizing member 12.

[0048]The ablation member 11 has an elongated shaft 13 with a proximal shaft section 14, a distal shaft section 15, and a plurality of ablation electrodes 16 on the distal shaft section 15. A handle 17 is secured to the end of the proximal shaft section 14 which has an electrical connector 18 adapted to be secured to an RF energy source (such as shown in FIG. 8). The handle 17 has a finger operated ring 20 for adjusting the shape of the distal shaft section such as the curved structure shown as 15A. The distal shaft section 15 has a flexible distal tip 21 distal to the electrodes which is adapted to guide the distal end of the ablation member into the guideway of the stabilizing member 12. Suitable commercial products for the ablation member include the REVELATION® T-Flex, a deflectable micro catheter with ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A surgical ablation probe assembly particularly suitable for ablating tissue on a surface of a patient's heart having an ablation member and a stabilizing member for guiding the probe assembly to an intracorporeal location such as a surface of the patient's heart. The elongated ablation member generally has at least one ablation electrode on a distal shaft section. The stabilizing member has a vacuum lumen which applies a vacuum to the inner chamber of the stabilizing member to aspirate fluid from within the chamber or about the stabilizing member and can aid in holding the stabilizing member to an intracorporeal surface such as the epicardial or endocardial surface of the patient's heart. The probe assembly may also have a removable stylet to help retain the shape of the distal portion. The assembly is suitable for treating a patient for atrial arrhythmia, by forming linear or curvilinear lesions and preferably a continuous lesion on the surface of the patient's heart.

Description

RELATED APPLICATIONS[0001]This application is based on Provisional Application Ser. No. 60 / 571,081, filed on May 14, 2004, Provisional Application Ser. No. 60 / 602,415, filed on Aug. 18, 2004, and Provisional Application Ser. No. 60 / 614,703, filed on Sep. 30, 2004. These applications are relied upon for priority and are incorporated herein in their entireties by reference.BACKGROUND OF THE INVENTION[0002]This invention generally relates to surgical ablation probes and the use of such probes in the treatment of cardiac arrhythmia and particularly atrial fibrillation and atrial flutter.[0003]Atrial fibrillation is the disorganized depolarization of a patient's atrium with little or no effective atrial contraction. Prior methods for treating a patient's arrhythmia include the use of anti-arrhythmic drugs such as sodium and calcium channel blockers or drugs which reduce the Beta-adrenergic activity. Other methods include surgically sectioning the origin of the signals causing the arrhyth...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B18/14A61B17/00
CPCA61B18/1482A61B18/1492A61B2018/00577A61B2018/00357A61B2018/00363A61B2018/00291
Inventor MOHAN, ASHIK A.WHEELER, WILLIAM K.CHAN, ERIC K.Y.MINHAS, BHUPINDER S.
Owner CARDIMA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products