Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Golf ball with varying land surfaces

a technology of golf balls and land surfaces, applied in the field of golf balls, can solve the problems of small dimples not always very effective in reducing drag and increasing lift, space does not improve the aerodynamic performance of balls, and the susceptibility of small dimples to paint flooding

Inactive Publication Date: 2005-03-24
ACUSHNET CO
View PDF24 Cites 74 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

This is the primary source of drag for golf balls.
In arranging the dimples, an attempt is made to minimize the space between dimples, because such space does not improve aerodynamic performance of the ball.
However, in reality small dimples are not always very effective in decreasing drag and increasing lift.
This results at least in part from the susceptibility of small dimples to paint flooding.
Paint flooding occurs when the paint coat on the golf ball fills the small dimples, and consequently decreases the dimple's aerodynamic effectiveness.
On the other hand, a smaller number of large dimples also begin to lose effectiveness.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Golf ball with varying land surfaces
  • Golf ball with varying land surfaces
  • Golf ball with varying land surfaces

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

With polygonal dimples, the land or un-dimpled surfaces can approach zero when the land surfaces separating the polygonal dimples approach thin lines. With nearly zero land surfaces and highly resilient core / cover materials the golf ball may exceed currently available distance and overall performance levels.

The distance that a golf ball would travel upon impact is a function of the coefficient of restitution (CoR) and the aerodynamic characteristics of the ball. The CoR is defined as the ratio of the relative velocity of two colliding objects after the collision to the relative velocity of the two colliding objects prior to the collision. The CoR varies from 0 to 1.0. A CoR value of 1.0 is equivalent to a perfectly elastic collision, and a CoR value of 0.0 is equivalent to a perfectly inelastic collision. For golf balls, CoR has been approximated as a ratio of the velocity of the golf ball after impact to the velocity of the golf ball prior to impact.

COR is an important measure...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A golf ball comprising a substantially spherical outer surface and a plurality of dimples formed thereon is provided. The dimples include polygonal dimples that are arranged such that the sides of adjacent polygonal dimples are substantially parallel to each other, and wherein the land area comprises first spacings and second spacings between adjacent dimples. The first spacings and the second spacings have substantially constant width between any two adjacent dimples and the width of the first spacings is different from the width of the second spacings. Circular dimples and circular land areas may also be included in the dimple pattern. The dimple pattern is easily adjusted to manipulate the aerodynamic efficiency of the golf ball.

Description

FIELD OF THE INVENTION The present invention relates to golf balls, and more particularly, to a golf ball having improved dimple patterns. BACKGROUND OF THE INVENTION Golf balls generally include a spherical outer surface with a plurality of dimples formed thereon. Conventional dimples are circular depressions that reduce drag and increase lift. These dimples are formed where a dimple wall slopes away from the outer surface of the ball forming the depression. Drag is the air resistance that opposes the golf ball's flight direction. As the ball travels through the air, the air that surrounds the ball has different velocities, thus different pressures. The air exerts maximum pressure at a stagnation point on the front of the ball. The air then flows around the surface of the ball with an increased velocity and reduced pressure. At some separation point, the air separates from the surface of the ball and generates a large turbulent flow area behind the ball. This flow area, which is...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A63B37/00
CPCA63B37/0004A63B37/0005A63B37/0006A63B37/0096A63B37/0021A63B37/0089A63B37/009A63B37/0009
Inventor SULLIVAN, MICHAEL J.HEBERT, EDMUND A.NARDACCI, NICHOLAS M.
Owner ACUSHNET CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products