Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Variable-batch-length iterative learning optimization control method for mobile robot

A mobile robot and iterative learning technology, applied in the field of variable batch length iterative learning optimization control of mobile robots, can solve problems such as convergence speed and monotonicity cannot be well guaranteed.

Active Publication Date: 2021-02-05
深圳市正运动技术有限公司
View PDF4 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, when the conventional ILC method deals with the problem of batch length variation, its convergence speed and monotonicity cannot be well guaranteed due to the randomness of the batch length.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Variable-batch-length iterative learning optimization control method for mobile robot
  • Variable-batch-length iterative learning optimization control method for mobile robot
  • Variable-batch-length iterative learning optimization control method for mobile robot

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0177] The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.

[0178] combine Figure 1-Figure 9 shown, please refer to figure 1 , which shows a block diagram of a control system model of a dual-rear-wheel independently driven rigid mobile robot disclosed in the present application. The controller input for batch k is u k , acting on the two independent rear wheel drive motors of the mobile robot can get the actual output y of the kth batch of the system k , which is compared with the set expected value stored in the expected trajectory memory, and the result is passed to the tracking error corrector to obtain the corrected tracking error e k . The corrected tracking error accuracy is compared with the set accuracy value, if the error accuracy does not reach the set accuracy, the corrected error e k with current controller input u k Pass to the optimized iterative learning controller to generate t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a variable-batch-length iterative learning optimization control method for a mobile robot, and relates to the field of mobile robot optimization control. The method comprises the steps of converting a repeatedly running mobile robot system into an input and output matrix model of a time sequence based on a lifting technology, and establishing a variable batch length probleminto a batch length random change model through a random variable; designing an iterative learning optimization control algorithm by adopting an optimization thought aiming at the batch length changecondition of the system, and obtaining a feedforward form of the iterative learning optimization control algorithm under the batch length change based on a performance index function. and based on asuccessive projection framework, proving the convergence of the iterative learning optimization control algorithm designed in the presence or absence of input constraints under mathematical expectation significance. According to the method, the tracking control problem of the mobile robot system under the variable batch length is solved, and meanwhile, the input constraint condition is considered,so that the high-precision tracking of a desired trajectory is realized.

Description

technical field [0001] The invention relates to the field of optimization control of mobile robots, in particular to a variable batch length iterative learning optimization control method for mobile robots. Background technique [0002] Mobile robots can complete some heavy, dangerous and repetitive tasks by moving, such as mine detection, seabed detection, unmanned driving, etc., and have practical value in many fields such as industry, medical treatment, and national defense. There are many types of mobile robots, the most common of which are those that move on wheels on the ground. [0003] When mobile robots perform repetitive process tasks, they are limited by certain output constraints or obstacles appear on the running trajectory, and the duration of different batches may vary. For example, when the pose angle of the mobile robot is constrained to run within a certain output range, when the rotation angle of the mobile robot exceeds the limit range, the mobile robot ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B25J9/16
CPCB25J9/163B25J9/1607
Inventor 陶洪峰庄志和黄彦德官上雷胡计昶陶新悦
Owner 深圳市正运动技术有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products